
OOP in IEC 61131-3 for experts 
Elegantly solving the handling of data and call information with OOP 

 
After the introduction to object-oriented programming in automation technology, the 
benefits of the use of interfaces and the inheritance of function blocks was explained 
in the second of the series of articles. But how does one deal with data? How does 
one evaluate information about implemented interfaces? With the answers to these 
questions, expert features of object-oriented programming such as those available in 
the IEC 61131-3 programming system CODESYS are described. 
 
Data handling with properties 
 
As already explained, interfaces contain only methods – but function blocks also 
have data. Thus the question arises: how does one access this data via an interface? 
 
Simple answer: one writes a method that returns the desired data, such as 
"GetName" or "IsReady" for instance. If applied consistently, the application 
programmer can quickly create pairs of functions which are always of the same type, 
such as "GetName" / "SetName" or "IsReady" / "SetReady". Such pairs of methods, 
which essentially only enable access to a piece of data, can be combined into a 
property. 
 
Let us take as an example the interface IDrive from the preceding article in the series 
and create an extended interface called INamedDrive. 
 
 

 
Fig. 1: Simple property 
 
A property is thereby a combination of two methods that encapsulate the write 
access or read access to a piece of data. This presents itself as a variable to the user 
of the properties. The compiler automatically ensures the call of the correct access 
method or signals an error if this is not implemented. Hence, one would probably 
equip INamedDrive in the above example only with a reading access to the name, 
thus preventing writing. 
 



In the main block PLC_PRG (from the preceding article) we declare a function block 
CANopen_DriveB_Named, which implements the new interface. In the body of the 
module in Fig. 2 the property can now be accessed in the same way as a variable. 
 

 
Fig. 2: Instancing and use of FBs with extended interfaces 
 
A property can be problematic, however, if one then wishes to allow access to 
complex data types such as a structure. Usually the application programmer wishes 
to access only one element of a structure. A method behind that, however, always 
returns the entire structure. This means that if the data type Structure is transferred 
directly to a property, then too much data will be copied - and that has an effect on 
the runtime of the program. How can one get around this problem? The data type 
"REFERENCE TO" supplies the answer. 
 
A Reference is a variable that always refers to another variable. If one manipulates 
the reference, then one actually manipulates the referenced variable. The reference 
differs from the pointer by the fact that the reference is not explicitly de-referenced, 
but instead each access takes place directly to the referenced variable. 
 
An example: 
 

 
Fig. 3: A simple reference 
 



Naturally the example in fig. 3 is not practical, it is intended merely to explain the use 
of references in practical applications. One of these is the return of data in the case 
of properties. 
 
For our sample project we assume a structure, DriverInfo, with the elements Name 
and Version. Instead of two properties for the name and the version, the entire 
information could also be returned as a structure. We give the function block 
Canopen_DriveB_Named an additional method. This does not return a simple data 
type, but a whole structure. 
 
 

 
Fig. 4: Complex data types and properties 
 

Properties thus offer the possibility to publish a functional access to data. This form of 
access corresponds to the demands of OOP for data encapsulation and at the same 
time provides the programmer with the convenience of simple data access. As 
explained in the example, the application programmer can also define such 
properties in an interface and as a result indirectly formulate a regulation for the data 
in a function block. 
 
A further possible use of properties is the return of scaled values: in this way a 
function block could store a value in the unit centimeters. With its own property, 
however, the value is returned in the unit inches. 
 
Data type queries on interfaces: casts 
 
The example leads us directly to the next topic, type conversion and type queries 
(casts). We defined an array of elements of the type IDrive in fig. 2 in the PLC_PRG. 
Only one element of the array additionally defines the specialized interface 



INamedDrive. It may be of importance at the place of use, however, whether the 
drive has a name or not, i.e. whether it implements the interface INamedDrive. To 
this end one must be able to query the type information of an object at runtime. 
 
CODESYS contains the operator __QUERYINTERFACE for this function. It expects 
two operands: on the one hand the interface object, from which one wishes to query 
another interface, and on the other an interface variable with the type which one 
wishes to check. The operator itself returns the result TRUE if the cast, i.e. the type 
query was successful. 
 
For the explanation we use the function block CheckDriveError (see 2nd part of the 
series of articles) and extend it by the output of an error text via the variable stError. 
The code part in fig. 5 is easy to comprehend: __QUERYINTERFACE asks the drive 
transferred by the interface IDrive whether it additionally implements the interface 
INamedDrive. If that is the case, then stError returns an error message with the drive 
name instead of a general text. 
 
 

 
Fig. 5: Use of __QUERYINTERFACE for the generation of a plain text error message 
in a heterogeneous environment 
 
 
A further application of the casts is rarer, but nevertheless possible: an interface 
reference requires the instance to which it refers. The suitable operator for this in 
CODESYS is __QUERYPOINTER. 
 
__QUERYPOINTER also expects two operands: an interface reference and a pointer 
to a function block. However, the programmer must ensure in this case that the type 
of the POINTER is also correct after the cast. 



 

 
Fig. 6: Use of __QUERYPOINTER 
 
The piece of code in fig. 6 explains a possible use of the operator: an identifier is 
queried by an interface reference, which in this case corresponds to the type name. 
Hence, the programmer knows the type of the instance that points to the reference 
and he can continue working safely with the pointer. 
 
 
Conclusion 
If one continues consistently down the path to object-oriented application 
programming within IEC 61131-3, then properties assist in the encapsulation of data. 
Additional operators based on OOP also retain the overview in complex applications. 
The benefit: simply re-usable control programs. The language scope of the market-
leading IEC 61131-3 programming system CODESYS fulfils the expectations of 
experienced application programmers in this regard. 


